ehrapy.preprocessing.log_norm¶
- ehrapy.preprocessing.log_norm(adata, vars=None, base=None, offset=1, copy=False)[source]¶
Apply log normalization.
Computes \(x = \log(x + offset)\), where \(log\) denotes the natural logarithm unless a different base is given and the default \(offset\) is \(1\).
- Parameters:
adata (
AnnData
) –AnnData
object containing X to normalize values in. Must already be encoded usingencode()
.vars (
str
|Sequence
[str
] |None
, default:None
) – List of the names of the numeric variables to normalize. If None all numeric variables will be normalized.base (
int
|float
|None
, default:None
) – Numeric base for logarithm. If None the natural logarithm is used.offset (
int
|float
, default:1
) – Offset added to values before computing the logarithm.copy (
bool
, default:False
) – Whether to return a copy or act in place.
- Return type:
- Returns:
None if copy=False and modifies the passed adata, else returns an updated AnnData object. Also stores a record of applied normalizations as a dictionary in adata.uns[“normalization”].
Examples
>>> import ehrapy as ep >>> adata = ep.dt.mimic_2(encoded=True) >>> adata_norm = ep.pp.log_norm(adata, copy=True)