ehrapy.plot.missing_values_heatmap¶
- ehrapy.plot.missing_values_heatmap(adata, *, filter=None, max_cols=0, max_percentage=0, sort=None, figsize=(20, 12), fontsize=16, labels=True, label_rotation=45, cmap='RdBu', vmin=-1, vmax=1, cbar=True, categoricals=False)[source]¶
Presents a seaborn heatmap visualization of nullity correlation in the given AnnData object.
Note that this visualization has no special support for large datasets. For those, try the dendrogram instead.
- Parameters:
adata (
AnnData
) –AnnData
object containing all observations.filter (
str
|None
, default:None
) – The filter to apply to the heatmap. Should be one of “top”, “bottom”, or None.max_cols (
int
, default:0
) – The max number of columns from the AnnData object to include.max_percentage (
float
, default:0
) – The max percentage fill of the columns from the AnnData object.sort (
str
|None
, default:None
) – The row sort order to apply. Can be “ascending”, “descending”, or None.figsize (
tuple
, default:(20, 12)
) – The size of the figure to display.fontsize (
float
, default:16
) – The figure’s font size.labels (
bool
, default:True
) – Whether or not to display the column names.label_rotation (
float
, default:45
) – What angle to rotate the text labels to.cmap (
str
, default:'RdBu'
) – What matplotlib colormap to use.vmin (
int
, default:-1
) – The normalized colormap threshold.vmax (
int
, default:1
) – The normalized colormap threshold.cbar (
bool
, default:True
) – Whether to draw a colorbar.categoricals (
bool
, default:False
) – Whether to include “ehrapycat” columns to the plot.
- Returns:
The plot axis.
Examples
>>> import ehrapy as ep >>> adata = ep.dt.mimic_2(encoded=True) >>> ep.pl.missing_values_heatmap(adata, filter="bottom", max_cols=15, max_percentage=0.999)
- Preview: