ehrapy.tools.kaplan_meier¶
- ehrapy.tools.kaplan_meier(adata, duration_col, event_col=None, *, timeline=None, entry=None, label=None, alpha=None, ci_labels=None, weights=None, fit_options=None, censoring='right')[source]¶
Fit the Kaplan-Meier estimate for the survival function.
The Kaplan–Meier estimator, also known as the product limit estimator, is a non-parametric statistic used to estimate the survival function from lifetime data. In medical research, it is often used to measure the fraction of patients living for a certain amount of time after treatment.
- Parameters:
adata (
AnnData
) – AnnData object with necessary columns duration_col and event_col.duration_col (
str
) – The name of the column in the AnnData objects that contains the subjects’ lifetimes.event_col (
str
|None
, default:None
) – The name of the column in anndata that contains the subjects’ death observation.timeline (
list
[float
] |None
, default:None
) – Return the best estimate at the values in timelines (positively increasing)entry (
str
|None
, default:None
) – Relative time when a subject entered the study. This is useful for left-truncated (not left-censored) observations. If None, all members of the population entered study when they were “born”.label (
str
|None
, default:None
) – A string to name the column of the estimate.alpha (
float
|None
, default:None
) – The alpha value in the confidence intervals. Overrides the initializing alpha for this call to fit only.ci_labels (
list
[str
] |None
, default:None
) – Add custom column names to the generated confidence intervals as a length-2 list: [<lower-bound name>, <upper-bound name>] (default: <label>_lower_<1-alpha/2>).weights (
list
[float
] |None
, default:None
) – If providing a weighted dataset. For example, instead of providing every subject as a single element of durations and event_observed, one could weigh subject differently.fit_options (
dict
|None
, default:None
) – Additional keyword arguments to pass into the estimator.censoring (
Literal
['right'
,'left'
], default:'right'
) – ‘right’ for fitting the model to a right-censored dataset. (default, calls fit). ‘left’ for fitting the model to a left-censored dataset (calls fit_left_censoring).
- Return type:
- Returns:
Fitted KaplanMeierFitter.
Examples
>>> import ehrapy as ep >>> adata = ep.dt.mimic_2(encoded=False) >>> # Flip 'censor_fl' because 0 = death and 1 = censored >>> adata[:, ["censor_flg"]].X = np.where(adata[:, ["censor_flg"]].X == 0, 1, 0) >>> kmf = ep.tl.kaplan_meier(adata, "mort_day_censored", "censor_flg", label="Mortality")