ehrapy.plot.rank_features_supervised¶
- ehrapy.plot.rank_features_supervised(adata, key='feature_importances', n_features=10, ax=None, show=True, save=None, **kwargs)[source]¶
Plot features with greatest absolute importances as a barplot.
- Parameters:
adata (
AnnData
) –AnnData
object storing the data. A key in adata.var should contain the feature importances, calculated beforehand.key (
str
, default:'feature_importances'
) – The key in adata.var to use for feature importances.n_features (
int
, default:10
) – The number of features to plot.ax (
Axes
|None
, default:None
) – A matplotlib axes object to plot on. If None, a new figure will be created.show (
bool
, default:True
) – If True, show the figure. If False, return the axes object.save (
str
|None
, default:None
) – Path to save the figure. If None, the figure will not be saved.**kwargs – Additional arguments passed to seaborn.barplot.
- Return type:
- Returns:
If show == False a matplotlib.axes.Axes object, else None.
Examples
>>> import ehrapy as ep >>> adata = ep.dt.mimic_2(encoded=False) >>> ep.pp.knn_impute(adata, n_neighbors=5) >>> input_features = [ ... feat for feat in adata.var_names if feat not in {"service_unit", "day_icu_intime", "tco2_first"} ... ] >>> ep.tl.rank_features_supervised(adata, "tco2_first", "rf", input_features=input_features) >>> ep.pl.rank_features_supervised(adata)