ehrapy.plot.cox_ph_forestplot¶
- ehrapy.plot.cox_ph_forestplot(adata, *, uns_key='cox_ph', labels=None, fig_size=(10, 10), t_adjuster=0.1, ecolor='dimgray', size=3, marker='o', decimal=2, text_size=12, color='k', show=None, title=None)[source]¶
Generates a forest plot to visualize the coefficients and confidence intervals of a Cox Proportional Hazards model.
The adata object must first be populated using the
cox_ph()
function. This function stores the summary table of the CoxPHFitter in the .uns attribute of adata. The summary table is created when the model is fitted using thecox_ph()
function. For more information on the CoxPHFitter, see the Lifelines documentation.Inspired by zepid.graphics.EffectMeasurePlot (zEpid Package, https://pypi.org/project/zepid/).
- Parameters:
adata (
AnnData
) –AnnData
object containing the summary table from the CoxPHFitter. This is stored in the .uns attribute, after fitting the model usingcox_ph()
.uns_key (
str
, default:'cox_ph'
) – Key in .uns wherecox_ph()
function stored the summary table. See argument uns_key incox_ph()
.labels (
Iterable
[str
] |None
, default:None
) – List of labels for each coefficient, default uses the index of the summary tafig_size (
tuple
, default:(10, 10)
) – Width, height in inches.t_adjuster (
float
, default:0.1
) – Adjust the table to the right.ecolor (
str
, default:'dimgray'
) – Color of the error bars.size (
int
, default:3
) – Size of the markers.marker (
str
, default:'o'
) – Marker style.decimal (
int
, default:2
) – Number of decimal places to display.text_size (
int
, default:12
) – Font size of the text.color (
str
, default:'k'
) – Color of the markers.show (
bool
, default:None
) – Show the plot, do not return figure and axis.title (
str
|None
, default:None
) – Set the title of the plot.
Examples
>>> import ehrapy as ep >>> adata = ep.dt.mimic_2(encoded=False) >>> adata_subset = adata[:, ["mort_day_censored", "censor_flg", "gender_num", "afib_flg", "day_icu_intime_num"]] >>> coxph = ep.tl.cox_ph(adata_subset, event_col="censor_flg", duration_col="mort_day_censored") >>> ep.pl.cox_ph_forestplot(adata_subset)